B.Sc., Biotechnology: Choice based credit system

B.Sc., -IV Semester W.E.F. 2020-21

BT-401 (ii) Environmental & Industrial Biotechnology

Learning Objective

This course aims to introduce fundamentals of Environmental Biotechnology. The course will also give an insight in introducing major groups of microorganisms and their industrial applications

Unit – I: Pollution Types and Control

Environmental Biotechnology-Environmental Pollution- introduction: Types of pollution, air pollution & its control through Biotechnology: Biofilters, Bio trickling filter. Water pollution and its management: Measurement of water, pollution, sources of water pollution. Microbiology of waste water treatment, aerobic processes, activated sludge, oxidation ponds, trickling filters. Anaerobic processes: Anaerobic digesters, upward flow anaerobic sludge blanket reactors.

UNIT-II: Bioremediation

Biodegradation and Bioremediation – Concepts & principles of Bioremediation, Bioremediation of Hydrocarbons and its applications. Degradation of pesticides and other toxic chemicals by microorganism. Role of genetically Engineered microbes, Concept of Phytoremediation, , environmental safety guidelines.

UNIT III: Biofuels

Bio fuels-biogas, microbial groups involved in biogas production & interactions, factors affecting biogas production, Biofertilizers.

Unit IV: Basic principles of Industrial Biotechnology

Industrially important microbes, its screening, selection and identification. Maintenance and preservation of industrially important microbial cultures. Strain Improvement, Basic concepts of fermentation; Design of fermenter and applications

Unit V: Commercial Production of Microbial products

Microbial technology products and applications; Microbial production of Organic acids (Lactic acid, citric acid), Amino acids (Glutamic acid, Aspartic acid and Lysine).

Fermentation by microbes for food additives: dairy products (Cheese, Yogurt), beverages (Beer, Wine) and antibiotics (Streptomycin, Penicillin)

Student Learning Outcomes Students should be able to gain fundamental knowledge in animal and plant biotechnology and their applications.

ENVIRONMENTAL AND INDUSTRIAL BIOTECHNOLOGY -PRACTICALS

- 1. Detection of coliforms for determination of the purity of potable water.
- 2. Determination of total dissolved solids of water
- 3. Determination of Hardness and alkalinity of water sample.
- 4. Determination of dissolved oxygen concentration of water sample
- 5. Determination of biological oxygen demand of sewage sample
- 6. Determination of chemical oxygen demand (COD) of sewage sample.
- 7. Isolation of industrially important microorganisms from soil.
- 8. Isolation of amylase producing organisms from soil.
- 9. Production of α amylase from Bacillus Spp. by shake flask culture.
- 10. Production of alcohol or wine using different substrates.
- 11. Estimation of citric acid by titrimetry.

*Mandatory 6 Practicals.

SCHEME OF VALUATION FOR PRACTICALS -50 M

- 1. Major Experiment I- 20M
- 2. Major Experiment II 20 M
- 3. Record 10M

List of reference books;

- 1. K. Vijaya Ramesh, Environmental Microbiology, 2004, MJP Publishers, Chennai.
- 2. A.G. Murugesan, C. Raja Kumari, Environmental Science & Biotechnology Theory& Techniques, 2005, MJP Publishers
- 3. Environmental microbiology by Raina M.Maier Ian L.Pepper& Charles P.Gerba,2000,Academic press
- 4. Environmental Chemistry, A.K. De. Wiley Eastern Ltd., 2001, New Delhi
- 5. Introduction of Biodeterioration, D. Allsopp and K.J. Seal, ELBS/Edward Arnold, 2008
- 6. Power un seen: How microbes rule the world. By Dixon, B. Freeman/ Spectrum, 1994,Oxford.
- 7. Environmental Microbiology. By. Mitchell. R. Wiley, 1992, New York
- 8. Introduction to Environmental Sciences, Y. Anjaneyulu ,2004, BS Publications
- 9. Industrial Microbiology by A.H.Patel,2009
- 10. Prescott & Dum (2002) Industrial Microbiology, Agrabios (India) ,2005, Publishers